
Poster: Experiences of Landing Machine Learning onto
Market-Scale Mobile Malware Detection

Hao Lin1,⇤,†, Liangyi Gong1, Zhenhua Li1, Feng Qian2, Zifan Zhang1,3,⇤
Qi Alfred Chen4, Zhiyun Qian5, Yunhao Liu1,6

1Tsinghua University 2University of Minnesota – Twin Cities 3Tencent Co. Ltd.
4University of California, Irvine 5UC Riverside 6Michigan State University

Abstract
Today app markets play a crucial role in publishing, updat-
ing and distributing mobile apps. However, they in turn have
become a convenient channel for mobile malware to spread.
Worse still, these app markets in a sense “lend credibility”
to the apps published on them. In the past decade, machine
learning (ML) techniques have been widely explored for au-
tomated and robust malware detection [2]. Unfortunately, we
have yet to see any report of an ML-based malware detection
solution deployed at market scales.

To learn the real-world challenges, we collaborate with a
major Android app market Tencent App Market, or T-Market,
which offers us large-scale ground-truth data. We compre-
hensively analyze the data and explore existing ML-based
malware detection solutions on multiple dimensions. As a
result, we confirm that the key challenges of developing such
systems lie in feature selection, feature engineering, app anal-
ysis speed, ML model evolution, and developer engagement.

More importantly, we notice that failure in any of the above
aspects would lead to the “wooden barrel effect” (and thus
vain efforts) of the whole solution. Given the complex inter-
play among these five aspects, we document our judicious
considerations and experiences in building an ML-based de-
tection system, APICHECKER, which successfully improves
and balances all five aspects (and thus no wooden barrel ef-
fect). It has been operational at T-Market since March 2018,
vetting over 10K apps every day with a precision of 98%, re-
call of 96%, and an average per-app scan time of 1.3 minutes.

Feature selection: a principled, data-driven approach for
the concrete selection of API features. In our design, we
adopt API-centric dynamic analysis for feature extraction,
which tracks Android SDK APIs at an app’s runtime. How-
ever, with over 50K APIs in Android SDK, we need to care-
fully select critical APIs that can effectively balance detection
accuracy and analysis speed. To this end, we extensively ana-
lyze our large dataset and reveal several intriguing findings.
We find that strategically tracking a subset of the entire SDK
APIs not only improves analysis speed, but also yields a better
accuracy. Also, different sources of APIs complement each
other and further improve accuracy. Guided by the findings, fi-
nally a total of 426 key APIs are selected as features. Detailed
feature selection can be found in our full paper [1].

⇤Student † Presenter.

Feature engineering: an adversary’s perspective for hid-
den features. We realize that solely relying on Android APIs
is problematic due to adversaries’ bypassing API invocations
with other mechanisms, e.g., Java reflection and intents. To
address this, we further capture the requested permissions
and used intents of apps in analysis. This information helps
unveil hidden API invocations (hidden features), and provides
a more complete landscape of apps’ runtime behaviors.

Analysis speed: efficient app emulation on x86 servers.
To boost the analysis speed, we incorporate the native x86
port of Android with dynamic binary translation, which trans-
lates ARM native code to x86, to build a efficient emulation
infrastructure. Compared to Google’s QEMU-based emulator
with full-system binary translation, we achieve 70% reduction
in app emulation time. As a result, we can vet an app in ⇠1.3
minutes on a single x86 server. For the concrete design of our
emulation infrastructure, please refer to our full paper [1].

Model evolution: automatically updating the ML model
with novel apps and Android SDK APIs. We combine the
original dataset with the detection results of the continuous
new app submissions in T-Market to automatically evolve our
deployed model on a monthly basis. Based on our observa-
tions of real-world deployment, the number of selected key
APIs only slightly fluctuates between 426 and 432, indicating
that APICHECKER is robust to API evolution.

Developer engagement: complete avoidance of false posi-
tives. False positives and negatives are inevitable for an ML
solution. Among them, false positives impact developer en-
gagement while false negatives affect end users’ experiences.
We choose to actively and fully avoid the former by manually
checking all apps vetted as malicious. Fortunately, ⇠90% of
submissions are updates that can be quickly inspected. Thus,
the incurred labor work of addressing false positives is accept-
able in practice. However, the latter can hardly be eliminated,
and thus we only address them based on user reports.

References
[1] Liangyi Gong, Zhenhua Li, Feng Qian, Zhang Zifan, Qi Alfred Chen,

Zhiyun Qian, Hao Lin, and Yunhao Liu. 2020. Experiences of Landing
Machine Learning onto Market-Scale Mobile Malware Detection. In
Proc. of EuroSys. ACM.

[2] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, You, Get
Off of My Market: Detecting Malicious Apps in Official and Alternative
Android Markets. In Proc. of NDSS. Internet Society.

1

Experiences of Landing Machine Learning onto
Market-Scale Mobile Malware Detection

Hao Lin, Liangyi Gong, Zhenhua Li, Feng Qian, Zifan Zhang, Qi Alfred Chen, Zhiyun Qian, Yunhao Liu

260 APIs
Correlated
to malware

112 APIs
Restrictive
permission

70 APIs
Sensitive
operation

Checking
permissions

Hidden and
internal APIs

Checking
intents

IPC through
intents

APICHECKER has been vetting 10K apps per day at
Tencent App Market since 03/2018!

Feature Selection:
Principled, data-driven

Feature Engineering:
Adversary’s perspective

Model Evolution:
Monthly update with

novel apps & SDK APIs

Analysis Speed:
Efficient app emulation
on powerful x86 servers

Developer Engagement:
Active & complete avoidance of false positives

vs. Passive mitigation of false negatives

APICHECKER: No Wooden Barrel Effect!

Benign Malicious

1.3 minutes per-app scan time,
with 98% precision & 96% recall

Dataset & ML model released at https://apichecker.github.io/ Contact us at linhao16@mails.tsinghua.edu.cn

https://apichecker.github.io/
http://mails.tsinghua.edu.cn

